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Decoherence and quantum fluctuations
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We show that the zero-point fluctuations of the intrinsic electromagnetic environment limit the phase-
coherence time in all mesoscopic systems at low temperatures. We derive this quantum-noise-limited dephas-
ing time and its temperature dependence in the crossover to the thermal regime. Our results agree well with
most experiments in one-dimensional systems.@S0163-1829~97!50120-2#
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The importance of decoherence in the quantum to cla
cal transition is well known.1 There are many example
where a quantum system undergoes environmentally indu
decoherence, such as the electron wave function in a l
dimensional solid, an atom trapped in a quantum optical s
tem, and an isolated quantum system coupled to a measu
apparatus. It has also been suggested that the decohe
which must have occurred between the quantum and cla
cal regimes during the inflationary era of the Universe w
driven by quantum fluctuations.1 Under certain conditions
quantum zero-point fluctuations of the electromagnetic en
ronment can also cause decoherence, even at finite tem
tures, and dominate over the thermal contributions.2 These
zero-point fluctuations, which persist even in vacuum
responsible for the Lamb shift, the natural linewidths of e
ergy levels, the Casimir force, and the broadening of re
nance lines in neutron scattering in solids.3 In addition, it has
recently been shown experimentally that these zero-p
fluctuations might play an important role in the interferen
effects studied in mesoscopic systems.4

In quantum theory, the probabilistic amplitudes are add
up using the linear superposition principle. The net proba
ity contains along with the classical probability, the interfe
ence, or the off-diagonal terms of the corresponding den
matrix which are characteristics of the quantum nature of
system.5 The natural way to define decoherence quant
tively is to obtain a time scaletf over which interference
effects are suppressed, or the relative phases in diffe
Feynman paths of the electron wave function are rand
ized. This is essentially the time over which an electr
maintains its phase memory. Normally, phase randomiza
of the electron wave function in a mesoscopic system occ
due to inelastic scattering effects such as electron-elect
electron-phonon, and magnetic impurity interactions,6–9 all
of which can be considered environmental for the elect
under study. We suggest, however, that zero-point fluc
tions also contribute to decoherence of the electron w
function, resulting in physically observable effects, such
the suppression of interference phenomena in mesosc
systems.

In this paper we show how zero-point fluctuations c
cause dephasing in a mesoscopic system. For a
dimensional~1D! quantum wire, we present two approach
for obtaining the zero-point-limited dephasing timet0 at low
temperatures which are in good agreement with the m
sured saturation values oftf found in many experiments
550163-1829/97/55~20!/13452~4!/$10.00
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We find thatt0 essentially depends on the diffusion consta
D and the resistance per unit length of the sample un
study. We also derive the functional form oftf(T) which is
valid from the zero-temperature quantum regime into
high-temperature regime, and accurately describes the
served behavior in the quantum to classical crossover
gime.

An example of the problem we are trying to understand
the temperature dependence of the phase coherence timtf
in a quasi-1D wire illustrated in Fig. 1. The gold wire has
resistance of 271V, it is 207mm long, 0.11mm wide, 0.06
mm thick, and has a classical diffusion consta
D50.068 m2/s. At the lowest temperature displayed, t
phase coherence lengthLf determined from standard wea
localization measurements6 is 15.7mm and the phase coher
ence timetf5Lf

2 /D53.6 ns. Contrary to every theoretica
prediction,tf is essentially temperature independent at l
temperatures, and this type of behavior is seen in every
periment on 1D wires and 2D films; however, the tempe
ture at which the saturation behavior starts varies from
mK to 10 K depending on the system und
investigation.4,10–13 It has been shown that this saturatio
behavior is not due to magnetic impurity scattering, or he
ing of the electrons due to noise or excess power dissipa
from the external environment.4 The solid line drawn
through the data was experimentally determined to be

tf5t0tanhFap2S \

t0kBT
D 1/2G , ~1!

FIG. 1. Temperature dependence oftf for a quasi-1D gold wire.
The solid line is a fit to Eq.~1! with phonons. Our predictedt0

calc

from Eq. ~6! is shown on the plot.
R13 452 © 1997 The American Physical Society
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where t0 is the low-temperature saturation value oftf .
Equation~1! was shown to fit most 1D experiments on m
soscopic metal wires with constanta only varying from 0.6
to 1.1.4

The functional form of Eq.~1! suggests that the zero-poin
fluctuations in the electromagnetic environment are resp
sible for the decoherence oftf found at low temperatures in
many experiments in mesoscopics. The zero-point field fl
tuations can also be interpreted as a source field effect, w
means that one can equivalently study a quantum sys
coupled to a fluctuating electromagnetic source field. T
generalized spectral density function which includes
zero-point fluctuations of the electromagne
environment14,15 is

S~v!5\vS 121
1

e\v/kBT21D . ~2!

At low temperatures, the zero-point fluctuations domina
andS(v) becomes temperature independent. The quan
system equilibrates with a quantum-statistical system
scribed by the zero-point fluctuations. At high temperatur
S(v)→kBT, thus losing the quantum signature\ of the elec-
tromagnetic fluctuations, andS(v) is dominated by the ther
mal fluctuations. The quantum system in this case rela
into equilibrium with a thermal bath at temperatureT. In the
intermediate regime, the full form forS(v) must be retained
in order to describe the transition between these two regim

We make a brief remark about what happens at low te
peratures. When the system or a particle is coupled to
environment which possesses many degrees of freed
even for weak couplings, the Hamiltonian for the entire s
tem cannot be exactly diagonalized in the eigenbasis of
particle. The lack of a diagonal basis is the reason that
system can only evolve to mixed states even at zero temp
ture. One may construct, or in principle it is possible to
alize in a physical system, an orthogonal basis for the
Hamiltonian in which the system may continue to stay in
well-defined stationary state. The choice of an initial state
also as important as the interaction. Usually an eigenstat
the full Hamiltonian is not easily prepared in realistic sy
tems. Hence the possibility of a transient behavior of
system as it comes into contact with a temperature bath
not be ruled out.

To estimate dephasing quantitatively, it suffices to eva
ate the phase change of the electron wave function in a fl
tuating electromagnetic field. It is well known that electro
electron interaction6,7 at low temperatures may be studied
equivalently calculating the fluctuations in the electroma
netic field due to the other electrons which serve as the
vironment for the electron under study. The time depende
of this electromagnetic field causes decoherence. This is
equivalent to studying the changes induced in the state
the environment, as first pointed out by Chakravarty a
Schmid.7 The equivalence, which is merely an artifact of t
fluctuation-dissipation theorem, was very nicely elucida
later by Stern, Aharonov, and Imry.8

We express the acquired phasef in the electron wave
function as the time integral of the interaction potential
the typeV@x(t),t#5 ẋ•A over the period of interaction. Th
quantity of interest is the average of the phase factor^eif&.
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Here^ & implies averaging due to disorder and field fluctu
tions which include both quantum and thermal parts.^eif&
can be approximated ase2(1/2)^f2&, because the mean valu
^exp(aixi)& is given by exp(12a ia j^xixj&) wherea i are con-
stants and thexi are fluctuating quantities subject to a Gaus
ian distribution.15 The suppression of the intensity of inte
ference by dephasing is of the forme2^f2&/2 which, for
^f2&;t,7,8 becomese2t/tf. Generally^f2& is not a linear
function of time. One has to estimate the evolution of t
off-diagonal terms of the reduced density matrix for the p
ticle. The characteristic time over whicĥf2& becomes of
the order of unity can be defined as the correspond
dephasing time. We evaluatêf2& by calculating the two
time integrals of the functionẋaẋb^AaAb&.6–8 Using the
fluctuation-dissipation theorem in a gauge where the sc
potential is chosen to be zero one obtains the two-point c
relation function for the vector potentia
^Aa„x(t),t…Ab„x(t8),t8…& in the corresponding Fourier spac
(k,v) ~Refs. 8 and 15!

^AaAb&k,v5
coth~\v/2kBT!

sv Fkakb

k2 G , ~3!

where s is the conductance. This is valid for conductin
systems at all temperatures where the fluctuations
strongly suppressed by the skin effect.6 Following an ap-
proach similar to Chakravarty and Schmid,7 the dephasing
time tf can be expressed using Eq.~3! by summing over all
allowed frequencies and wave vectors:

1

tf
5

e2

s\2E duE dk

~2p!2
E dv

2p
\v cothS \v

2kBT
D

3k22exp~2Dk2uuu2 ivu!. ~4!

In this expression, 1/s for a quasi-1D wire is the resistanc
of a phase coherent length,Rf5RLf /L. In a quasi-1D sys-
tem, for any two interfering paths the wave vectork must be
a two-dimensional vector.

Previous attempts to incorporate zero-point fluctuatio
only considered the motion of impurity ions.16 Our approach
differs from all others in that to calculate the low temperatu
saturation value of phase coherence timet0 we consider only
the zero-point fluctuations of the intrinsic electromagne
field. At low temperatures or high frequencies,v@kBT/\,
the contribution to dephasing is dominated by the quant
part of the field fluctuations which diverges linearly for larg
v. As in previous theories,6–8 one must introduce a phenom
enological upper cutoff to obtain any nondiverge
fluctuation-dependent physical quantity. In the case of e
trons in a quasi-1D disordered system, the fluctuations m
be able to ‘‘couple to the particle displacement’’~Refs. 9, 15,
and 17! in order to contribute effectively to decoherenc
The maximum frequency of the fluctuations that one sho
retain is no longerkBT/\, but becomes the average classic
energy of the particle. For a ballistic sample this cuto
would then be the Fermi energyEF , but for a diffusive
sample it becomesm* vD

2 /2, wherem* is the effective mass
vD is the drift velocity of the particle given byvFl e /L. l e is
the elastic mean free path, and, for a phase-coherent volu
L is essentially the phase-coherent lengthLf . Such a choice
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of the upper cutoff is also natural in other models of de
herence, where the inverse of the collision timescale is ty
cally taken as the cutoff.17 Thus frequencies much highe
than kBT contribute to dephasing. In the problem at han
uvu in Eq. ~4! is also bounded at the bottom byhD/Lf

2 . The
electron traverses an average distance ofLf before losing
phase coherence. Therefore the maximum wavelength w
can couple to the particle isk21;Lf . Wavelengths longer
thanLf do not contribute to dephasing. The lower cutoff
uvu is given byDk2.D/Lf

251/tf .
Extending the v integral over the range

h/tf<u\vu<m* vD
2 /2, and taking the low-temperature lim

of the spectral density functionS(v)→\v/2, the zero-point
energy for the modev, from Eq. ~4! one obtains

1

t0
5

e2Rf

2p\2E
hD/Lf

2

m* vD
2 /2
d~\v!. ~5!

Except in very diffusive systems, the lower cutoff is sm
compared to the upper cutoff. UsingLf(T→0)5ADt0, the
1D zero-point phase coherence timet0 is given by

1

t0
5S e2d2Rm*D3/2

4p\2L D 2. ~6!

We have usedR/L5Rf /Lf andD5vFl e /d, whereD is the
classical diffusion constant ind dimensions. Using the
sample parameters given earlier, for the 1D wire displaye
Fig. 1, we findt0.4.1 nS, which is in good agreement wi
the measured saturation value of 3.6 nS. As shown in Re
this expression also accurately predicts the value of the l
temperature saturation phase coherence timet0 found in
most published experiments on diffusive 1D wires includi
semiconductors. For a high mobility two-dimension
electron-gas wire with system sizeL.Lf , from Eq.~4! one
easily obtains an expression for the zero-point depha
time 1/t05(m*D/4h)(D/\) by using the Einstein relation
s5e2N(0)D, whereD52/N(0)A. N(0) is the density of
states atEF , andA is the phase coherent area of the samp

In the high temperature regime, Eq.~2! reduces to
S(v)5kBT.

6–9 The upper cutoff forv can then be taken a
kBT, since the thermal fluctuations dominate with a therm
correlation time\/kBT,t0. The crossover between the tw
regimes is very important to understand. Because of the
nite frequency cutoffs in Eq.~5!, in a phenomenologica
model one can approximate the integrand in Eq.~4! by the
spectral density function for a single average energy mo
\^v&[^E&. The expression for the temperature depende
of tf with a zero-point saturation timet0 becomes

1/tf5~1/t0!coth~^E&/2kBT!. ~7!

The above equation can be obtained from the rigorous s
tion of a Pauli Master equation for the decohering two-le
system coupled to a thermal bath18 for a single mode
^E&/\. We interpret^E& to be the Thouless energy for
particle that diffuses over a volume defined by two diffusi
length scales, the zero-point diffusion lengthL05ADt0 and
the thermal diffusion lengthLT5A\D/kBT. The correspond-
ing Thouless energy is then given by^E&5phD/L0LT .
Equation ~4! can then be written as
tf5t0tanh@ap2A\/t0kBT#, wherea is a constant of orde
-
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unity which takes into account that our approximation f
^E& is only good to first order. This is the same as Eq.~1!,
which was experimentally deduced4 from studies of the
dephasing time in 1D wires. Interestingly, the temperat
dependence oftf given by Eq.~1! at high temperatures re
duces to that given by electron-electron interactions w
large energy transfers.6 As shown by the solid line in Fig. 1
Eq. ~1! correctly describes the temperature dependence o
dephasing time for this sample as well as most 1D mes
copic wires published to date once the phonon contribut
to dephasing at high temperature is included
1/tf→1/tf11/tep , wheretep is the scattering time due to
phonons. For 2D metal films, it has been shown recen4

that Eq.~1! also correctly describes the temperature dep
dence oftf , with the constanta reduced by a factor ofp.
For 1D semiconductor wires withLT@w, the width of the
sample, Eq. ~1! becomes tf5t0tanh@(a\/kBTw)AD/t0#,
with t0 given by Eq.~6!, and quantitatively describes th
complete behavior observed in many published experime
Note that at high temperatures for this case,tf}1/kBT, and
not (1/kBT)

1/2, as is the case for most metal wires.
It is interesting to note that Eq.~6! for the intrinsic

dephasing time for mesoscopic wirest0 could also have
been derived from a combination of the Aharonov-Boh
effect and the fluctuation-dissipation theorem. One very g
eral way to write the fluctuation-dissipation theorem15 is to
relate the mean-square fluctuations^F2& of any generalized
force of a system in thermodynamic equilibrium with a p
rameter,R(v) which characterizes an irreversible process

^F2&5
2

pE R~v!S~v!dv, ~8!

whereS(v) is given by Eq.~2!. Voltage across a resistiv
element is an example of a generalized force, and Eq.~8!
reduces to the standard Johnson noise formula once the h
temperature limit ofS(v) is taken andR(v) is identified
with the resistance of the sample. In mesoscopics, the p
of the electron wave function is changed by a time depend
potentialV„x(t),t… by an amount given by the electrostat
Aharonov-Bohm effect,df5(e/\)*Vdt. Following Stern,
Aharonov, and Imry,8 we define dephasing such th
^(df)2&;1, which occurs over a time scale oftf . The
dephasing time can be computed from

1.^~df!2&5
e2

\2E
0

tfE
0

tf
dtdt8^V~ t !V~ t8!&. ~9!

Most of the contribution to^(df)2& will occur when
vtf,1,8 and the environment can essentially be conside
to be stationary over the timetf . Equation~9! can then be
approximated bŷV2&5\2/e2tf

2 becoming the left-hand side
of Eq. ~8!. The next important step is to remember that
mesoscopics, the conductanceG of a phase-coherent volum
fluctuates as the interference of all paths occurs at ev
point in the phase-coherent volume by an amount given
universal conductance fluctuation theory,19 DG5e2/h
5DRf /Rf

2 on average. Therefore we believe the parame
which controls the irreversibility in Eq.~8! is not the sample
resistanceR but rather the fluctuationDRf5e2Rf

2 /h. Since
we are interested in the intrinsic decoherence time, we t
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the low-temperature limitS(v)→\v/2,tf→t0, and assume
thatRf(v) is frequency independent over the same limits
integration used in Eq.~5!. Just as in the derivation of Eq
~6!, we useR/L5Rf /Lf and we easily arrive at the sam
result as given in Eq.~6!.

In conclusion, we have shown that the phase cohere
time in mesoscopic systems does not go to infinity as p
dicted by most theories, but will always be limited by th
zero-point fluctuations of the intrinsic electromagnetic en
ronment. We have shown that the ubiquitous saturation
tf found in all low-temperature experiments on 1D mes
copic systems can be quantitatively understood by incor
rating the zero-point fluctuations into previous electro
electron interaction theories. We have demonstrated how
-

et
f

ce
-

-
of
-
o-
-
he

complete temperature dependence oftf can be calculated
using the full spectral density function for three exampl
long metal wires, long semiconductor wires, and complet
phase-coherent short wires. This functional form appear
be consistent with data from most experiments. In additi
we predict the magnitude of the low-temperature satura
value of this decoherence time from the knowledge of o
R/L and the classical diffusion constant, in agreement w
most experiments.
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