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Decoherence and quantum fluctuations
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We show that the zero-point fluctuations of the intrinsic electromagnetic environment limit the phase-
coherence time in all mesoscopic systems at low temperatures. We derive this quantum-noise-limited dephas-
ing time and its temperature dependence in the crossover to the thermal regime. Our results agree well with
most experiments in one-dimensional syste[§§163-18207)50120-3

The importance of decoherence in the quantum to classWe find thatr, essentially depends on the diffusion constant
cal transition is well knowr. There are many examples D and the resistance per unit length of the sample under
where a quantum system undergoes environmentally inducestudy. We also derive the functional form of(T) which is
decoherence, such as the electron wave function in a lowalid from the zero-temperature quantum regime into the
dimensional solid, an atom trapped in a quantum optical syshigh-temperature regime, and accurately describes the ob-
tem, and an isolated quantum system coupled to a measurisgrved behavior in the quantum to classical crossover re-
apparatus. It has also been suggested that the decoherergi@ne.
which must have occurred between the quantum and classi- An example of the problem we are trying to understand is
cal regimes during the inflationary era of the Universe waghe temperature dependence of the phase coherencerjime
driven by quantum fluctuatiorlsUnder certain conditions, in a quasi-1D wire illustrated in Fig. 1. The gold wire has a
quantum zero-point fluctuations of the electromagnetic enviresistance of 270, it is 207 um long, 0.11xm wide, 0.06
ronment can also cause decoherence, even at finite tempegam thick, and has a classical diffusion constant
tures, and dominate over the thermal contributidhese D=0.068 nt/s. At the lowest temperature displayed, the
zero-point fluctuations, which persist even in vacuum aregphase coherence length, determined from standard weak
responsible for the Lamb shift, the natural linewidths of en-localization measuremerits 15.7 um and the phase coher-
ergy levels, the Casimir force, and the broadening of resoence timer = L§ID=3.6 ns. Contrary to every theoretical
nance lines in neutron scattering in solfds. addition, it has prediction, 7, is essentially temperature independent at low
recently been shown experimentally that these zero-poiniemperatures, and this type of behavior is seen in every ex-
fluctuations might play an important role in the interferenceperiment on 1D wires and 2D films; however, the tempera-
effects studied in mesoscopic systetns. ture at which the saturation behavior starts varies from 20

In quantum theory, the probabilistic amplitudes are addednK to 10 K depending on the system under
up using the linear superposition principle. The net probabilinvestigatior!1°=12 It has been shown that this saturation
ity contains along with the classical probability, the interfer-behavior is not due to magnetic impurity scattering, or heat-
ence, or the off-diagonal terms of the corresponding densitihg of the electrons due to noise or excess power dissipation
matrix which are characteristics of the quantum nature of thérom the external environmefit.The solid line drawn
systent The natural way to define decoherence quantitathrough the data was experimentally determined to be
tively is to obtain a time scale, over which interference
effects are suppressed, or the relative phases in different 1
Feynman paths of the electron wave function are random- =1 tank{awz( h ) } 1)
ized. This is essentially the time over which an electron ¢ 70 ToksT) |’
maintains its phase memory. Normally, phase randomization
of the electron wave function in a mesoscopic system occurs
due to inelastic scattering effects such as electron-electron,
electron-phonon, and magnetic impurity interactiérsall [ 70" = 4.1 ns
of which can be considered environmental for the electron N
under study. We suggest, however, that zero-point fluctua-
tions also contribute to decoherence of the electron wave
function, resulting in physically observable effects, such as

10! ¢ . .

. . . . To(fit) = 3.6 ns
the suppression of interference phenomena in mesoscopic a"(m) — 0.87
systems.
In this paper we show how zero-point fluctuations can Lot ‘ ,
cause dephasing in a mesoscopic system. For a one- 107® 107! T(K) 10° 10!
dimensional1D) quantum wire, we present two approaches
for obtaining the zero-point-limited dephasing timgat low FIG. 1. Temperature dependencergffor a quasi-1D gold wire.

temperatures which are in good agreement with the meaFhe solid line is a fit to Eq(1) with phonons. Our predictedi®
sured saturation values of; found in many experiments. from Eq.(6) is shown on the plot.

0163-1829/97/580)/134524)/$10.00 55 R13 452 © 1997 The American Physical Society



RAPID COMMUNICATIONS

55 DECOHERENCE AND QUANTUM FLUCTUATIONS R13 453

where 7 is the low-temperature saturation value of. Here( ) implies averaging due to disorder and field fluctua-
Equation(1) was shown to fit most 1D experiments on me-tions which include both quantum and thermal pae?)

SOSCOpiC metal wires with Constaﬂtonly Varying from 0.6 can be approximated 35—(1/2)<¢2> because the mean value
4 - ' ’
to 1.1. . _ {explax)) is given by expfa;aj(x;X;)) whereq; are con-
The functional form of Eq(1) suggests that the zero-point stants and the; are fluctuating quantities subject to a Gauss-

fluctuations in the electromagnetic environment are responan distribution'® The suppression of the intensity of inter-
sible for the decoherence of, found at low temperatures in ference by dephasing is of the forer (422 which. for

many experiments in mesoscopics. The zero-point field fluc; 2 —1 78 becomese— "¢ Generallv(42) is not a linear
tuations can also be interpreted as a source field effect, whic1<n¢ )L, ) y{6%)

that ivalently stud X i unction of time. One has to estimate the evolution of the
means that one can equivaiently study a quantum sys eIEpff—diagonal terms of the reduced density matrix for the par-

coupled to a fluciuaiing electromagnetic source field. Theficle. The characteristic time over whigh$?) becomes of
general[zed spectral_densny function which includes t.hpthe order of unity can be defined as the corresponding
Z(re]:/ci)r_gr?m(ta rﬂﬁlfétijsctuatmns of  the electromagnetic dephasing time. We evaluatgs?) by calculating the two
time integrals of the functiork,xs(A,Az).58 Using the
1 1 fluctuation-dissipation theorem in a gauge where the scalar
§+ eWkBT——l)' (2) potential is chosgn to be zero one obtains the two—point. cor-
relation function for the vector potential

S(w)=hw

A, (X(t),D)Ag(x(t"),t")) in the corresponding Fourier space

At low temperatures, the zero-point fluctuations dominate,<
) (Refs. 8 and 1p

and S(w) becomes temperature independent. The quanturﬂ“
system equilibrates with a quantum-statistical system de-
scribed by the zero-point fluctuations. At high temperatures, (AePp)k o=
S(w)—kgT, thus losing the quantum signatureof the elec- ’ gw
tromagnetic fluctuations, arf{ ) is dominated by the ther-
mal fluctuations. The quantum system in this case relax
into equilibrium with a thermal bath at temperatdreln the
intermediate regime, the full form f@&(w) must be retained - . -
in order to describe the transition between these two regime roach similar to Chakravarty and Schriithe dephasing

: ime 7, can be expressed using E8) by summing over all
- ¢ X
We make a brief remark about what _happens at low tem: 1owed frequencies and wave vectors:
peratures. When the system or a particle is coupled to an

environment which possesses many degrees of freedom, 1 e? dk do Lo
even for weak couplings, the Hamiltonian for the entire sys- —= —zf duf —zf —hw cotI-( )
tem cannot be exactly diagonalized in the eigenbasis of the 7y Oh (2m)*) 2m 2kgT
particle. The lack of a diagonal basis is the reason that the x k~2exp( — DK?|u] —i wu). (4)
system can only evolve to mixed states even at zero tempera-
ture. One may construct, or in principle it is possible to re-In this expression, & for a quasi-1D wire is the resistance
alize in a physical system, an orthogonal basis for the fullof a phase coherent lengtR,,=RL,/L. In a quasi-1D sys-
Hamiltonian in which the system may continue to stay in atem, for any two interfering paths the wave vedtomust be
well-defined stationary state. The choice of an initial state isa two-dimensional vector.
also as important as the interaction. Usually an eigenstate of Previous attempts to incorporate zero-point fluctuations
the full Hamiltonian is not easily prepared in realistic sys-only considered the motion of impurity ion8Our approach
tems. Hence the possibility of a transient behavior of thediffers from all others in that to calculate the low temperature
system as it comes into contact with a temperature bath casaturation value of phase coherence tirgeve consider only
not be ruled out. the zero-point fluctuations of the intrinsic electromagnetic
To estimate dephasing quantitatively, it suffices to evalufield. At low temperatures or high frequencies>kgT/#,
ate the phase change of the electron wave function in a fluche contribution to dephasing is dominated by the quantum
tuating electromagnetic field. It is well known that electron- part of the field fluctuations which diverges linearly for large
electron interactioh’ at low temperatures may be studied by w. As in previous theorie%;® one must introduce a phenom-
equivalently calculating the fluctuations in the electromag-enological upper cutoff to obtain any nondivergent
netic field due to the other electrons which serve as the erftuctuation-dependent physical quantity. In the case of elec-
vironment for the electron under study. The time dependencgons in a quasi-1D disordered system, the fluctuations must
of this electromagnetic field causes decoherence. This is aldse able to “couple to the particle displacemeriRefs. 9, 15,
equivalent to studying the changes induced in the states eind 17 in order to contribute effectively to decoherence.
the environment, as first pointed out by Chakravarty andrhe maximum frequency of the fluctuations that one should
Schmid’ The equivalence, which is merely an artifact of the retain is no longekgT/#, but becomes the average classical
fluctuation-dissipation theorem, was very nicely elucidatecenergy of the particle. For a ballistic sample this cutoff
later by Stern, Aharonov, and Imfy. would then be the Fermi energy-, but for a diffusive
We express the acquired phagein the electron wave sample it becomes’* v3/2, wherem* is the effective mass,
function as the time integral of the interaction potential ofy,  is the drift velocity of the particle given byelo/L. | is
the typeV[x(t),t]=x-A over the period of interaction. The the elastic mean free path, and, for a phase-coherent volume,
quantity of interest is the average of the phase faggt). L is essentially the phase-coherent length Such a choice

th( 7 w/2kgT)[ K K
COI'( w/ZKg ){ kzﬁ’ (3)

ewherea is the conductance. This is valid for conducting
§ystems at all temperatures where the fluctuations are
strongly suppressed by the skin eff@dtollowing an ap-
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of the upper cutoff is also natural in other models of deco-unity which takes into account that our approximation for
herence, where the inverse of the collision timescale is typi{E) is only good to first order. This is the same as Eq,
cally taken as the cutoff. Thus frequencies much higher which was experimentally deduckdrom studies of the
than kgT contribute to dephasing. In the problem at hand,dephasing time in 1D wires. Interestingly, the temperature
|w| in Eq. (4) is also bounded at the bottom h)D/L'j,. The  dependence of, given by Eq.(1) at high temperatures re-
electron traverses an average distance gfbefore losing duces to that given by electron-electron interactions with
phase coherence. Therefore the maximum wavelength whidarge energy transfefsAs shown by the solid line in Fig. 1,
can couple to the particle Is‘1~L¢. Wavelengths longer Eq.(1) correctly describes the temperature dependence of the
thanL , do not contribute to dephasing. The lower cutoff in dephasing time for this sample as well as most 1D mesos-
|w| is given byDk?= D/Lfﬁzl/%. copic wires published to date once the phonon contribution
Extending the  integral over the range t0 dephasing at high temperature is included by
hi7s<|hw|<m*v3/2, and taking the low-temperature limit 1/74—1/74+ 1/7e,, Wherere,, is the scattering time due to
of the spectral density functiof(w)— % /2, the zero-point Phonons. For 2D metal films, it has been shown recéntly

energy for the mode, from Eq. (4) one obtains that Eq.(1) also correctly describes the temperature depen-
' dence ofr,, with the constantr reduced by a factor ofr.

1 e2R¢ m*v2 /2 For 1D semiconductor wires with;>w, the width of the
o zwﬁthD/Lz (hw). ) sample, Eq.(1) becomes 7,= rotant(afi/lkgTW)D/ 0],
¢

with 7 given by Eq.(6), and quantitatively describes the
Except in very diffusive systems, the lower cutoff is small complete behavior observed in many published experiments.
compared to the upper cutoff. Usitg,(T—0)= Do, the  Note that at high temperatures for this casgx 1/kgT, and

1D zero-point phase coherence timgis given by not (1kgT)Y2 as is the case for most metal wires.
- 32 2 It is interesting to note that Eq6) for the intrinsic
iz(e d“Rn* D ) 6) dephasing time for mesoscopic wireg could also have
To A7kl been derived from a combination of the Aharonov-Bohm

effect and the fluctuation-dissipation theorem. One very gen-
eral way to write the fluctuation-dissipation theoreris to
relate the mean-square fluctuatigfis?) of any generalized
"Yorce of a system in thermodynamic equilibrium with a pa-
L{ameter,R(m) which characterizes an irreversible process,

We have use®R/L=R,/L, andD=vgl./d, whereD is the
classical diffusion constant ird dimensions. Using the
sample parameters given earlier, for the 1D wire displayed i
Fig. 1, we findryg=4.1 nS, which is in good agreement with
the measured saturation value of 3.6 nS. As shown in Ref.
this expression also accurately predicts the value of the low- 2

temperature saturation phase coherence timdound in (F3)= —f R(w)S(w)dw, (8
most published experiments on diffusive 1D wires including ™

semlconductor_s. F_or a hlgh_ mobility two-dimensional where S(w) is given by Eq.(2). Voltage across a resistive
electron-gas wire with system site=L,, from Eq.(4) one  glement is an example of a generalized force, and (Bx.
easily obtains an expression for the zero-point dephasingsqyces to the standard Johnson noise formula once the high-
time 1/ro=(m*D/4h)(A/#) by using the Einstein relation temperature limit ofS(w) is taken andR(w) is identified
o=e’N(0)D, where A=2/N(0)A. N(0) is the density of jth the resistance of the sample. In mesoscopics, the phase
states aEr, andA is the phase coherent area of the sampleof the electron wave function is changed by a time dependent
In the high temperature regime, Eq2) reduces to potentialV(x(t),t) by an amount given by the electrostatic

S(w)=kgT.>~ The upper cutoff forw can then be taken as Anaronov-Bohm effectse= (/%) [Vdt. Following Stern,
kgT, since the thermal fluctuations dominate with a thermalanaronov, and Imr?, we define dephasing such that

correlation time#/kgT<7,. The crossover between the two ((s54)2)~1, which occurs over a time scale of,. The
regimes is very important to understand. Because of the figephasing time can be computed from
nite frequency cutoffs in Eq(5), in a phenomenological
model one can approximate the integrand in E).by the €2 (14 (74
spectral density function for a single average energy mode, 1=((8¢)?)= pf f dtdt’(V(t)V(t")). (9
fi{w)=(E). The expression for the temperature dependence 0 70
of 7, with a zero-point saturation time, becomes Most of8 the contribution to((8¢)?) will occur when
. wT4<17and the environment can essentially be considered

17y = (1i7o)cO({E)/2KgT). @) to ge stationary over the time, . Equation(9) can then be
The above equation can be obtained from the rigorous soluapproximated byV?) =#2/e?75 becoming the left-hand side
tion of a Pauli Master equation for the decohering two-levelof Eq. (8). The next important step is to remember that in
system coupled to a thermal b#thfor a single mode mesoscopics, the conductar®eof a phase-coherent volume
(E)/%. We interpret(E) to be the Thouless energy for a fluctuates as the interference of all paths occurs at every
particle that diffuses over a volume defined by two diffusionpoint in the phase-coherent volume by an amount given by
length scales, the zero-point diffusion lendth= D7, and  universal conductance fluctuation thedty, AG=e?/h
the thermal diffusion length= \AD/kgT. The correspond- =AR¢,/R§) on average. Therefore we believe the parameter
ing Thouless energy is then given W)= mhD/LoLy.  which controls the irreversibility in E(8) is not the sample
Equation (4) can then be written as resistanceR but rather the quctuatioAR(ﬁ:ezbe/h. Since
Ty= rotan am®\h/ 7okgT], where« is a constant of order we are interested in the intrinsic decoherence time, we take
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the low-temperature limi§(w) —#A w/2,7,— 79, and assume complete temperature dependencergfcan be calculated
thatR,(w) is frequency independent over the same limits ofusing the full spectral density function for three examples,
integration used in Eq5). Just as in the derivation of Eq. long metal wires, long semiconductor wires, and completely
(6), we useR/L=R,/L 4 and we easily arrive at the same phase-coherent short wires. This functional form appears to
result as given in E((6). be consistent with data from most experiments. In addition,
In conclusion, we have shown that the phase coherencge predict the magnitude of the low-temperature saturation
time in mesoscopic systems does not go to infinity as preyajue of this decoherence time from the knowledge of only

dicted by most theories, but will always be limited by the g/ and the classical diffusion constant, in agreement with
zero-point fluctuations of the intrinsic electromagnetic envi-,qst experiments.

ronment. We have shown that the ubiquitous saturation of

7, found in all low-temperature experiments on 1D mesos- We thank A. Raval and J. Schwarz for useful discussions.
copic systems can be quantitatively understood by incorpoThis work is supported by the NSF under Contract No.
rating the zero-point fluctuations into previous electron-DMR9510416.

electron interaction theories. We have demonstrated how the
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