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Dephasing of electrons by two-level defects in quantum dots
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The electron dephasing time, in a diffusive quantum dot is calculated by considering the interaction
between the electron and dynamical defects, modeled as two level systems. Using the standard tunneling model
of glasses, we obtain a linear temperature dependencerpf tonsistent with the experimental observation.
However, we find that, in order to obtain dephasing times on the order of nanoseconds, the number of two-level
defects needs to be substantially larger than the typical concentration in glasses. We also find a finite system-
size dependence of,, which can be used to probe the effectiveness of surface-aggregated defects.
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. INTRODUCTION Anderson, Varma and Halperifiand also by Phillips? the
tunneling model of TLS has been quite successful in explain-

Interference of the electron’s paths in a mesoscopic coning various anomalies in the acoustic, dielectric, and thermo-
ductor results in various quantum phenomena such as thdynamic properties of structural glasses and other amorphous
universal conductance fluctuation, persistent current, andolids?
weak localization. In all of these phenomena, the dephasing Imry, Fukuyama, and Schwibhave recently suggested
time 7, appears as a typical time scale over which the electhat the saturation behavior may have the same origin as the
tronic trajectories have interference; weak-localization cor-1/f conductance noise, arising from the two-level defects.
rection to conductivity—for example, is conventionally used Zawadowski, von Delft, and Ralphhave argued that the
for the experimental determination of the dephasing tinre.  apparent saturation af, may be caused by the two-channel
the moderate temperature range, experimentally deterfine&ondo effect due to electron-TLS scatterings. However, it
values ofr in diffusive metals are found to be in excellent was pointed odtthat hysteresis or switching behavior, ex-
agreement with the theoretical predictions of due to  pected from the effects of TLS, was not observed in experi-
electron-electron interactionWhile it is theoretically ex- ments. In addition, various concentration-dependent Kondo-
pected thatr,— asT—0 in the absence of other external like bulk trends anticipated in these theories were also not
sources of dephasing,, is found to saturate at low tempera- observed in the experiments.
tures inalmostall experiments, including the recent care- In this paper, we investigate the role of two-level defects
fully performed experiment§.’ This severe discrepancy be- in the dephasing of electrons guantum dotsIn the recent
tween theory and experimental observation of low-experiments from the Marcus group, Huibers and coworkers
temperature saturation has fast become a topic olfiave observed the saturation of dephasing time in open quan-
controvers§® surrounding the question whether the itlea tum dot$! below 0.1 K along with a strong temperature de-
and the theof§/of zero-point fluctuations of the electromag- pendence above 0.1 K. In addition to this experiment, satu-
netic field created by the electron-electron interaction as aation of 7, in guantum dots has also been reported in other
source of dephasing are tenable on general grounds. Thixperiment$?? If one assumes that two-level defects are
poses a serious problem as zero-temperature dephasing resSponsible for the saturation of dephasing time in these
electrons has been argued to be relevant to the problems ekperiment$? it is then natural to suppose just above 0.1 K
persistent current in normal metafsthe low-temperature the linear temperature dependence should be explained by
metal/insulator, quantum-Hall/insulator and superconductoriwo-level defects as well. Our calculations indeed show that
insulator transitions!™** and transport through various the dephasing rate due to the TLS does have a linear tem-
normal-metal/superconductor hybrid junctidfid? but the  perature dependence. However, we find that the magnitude
most unsettling consequence is the negation of the fundaf the dephasing by two-level defects is too small to explain
mental premise upon which the theories—and hence ouhe experimentally observed dephasing time of nanoseconds.
understanding—of metals and insulators are based: th€his implies that either other mechanisms are more effective
many-body Fermi-liquid picture. or surface-aggregated two-level defects play a dominant role;

Among various sustained efforts to find a zero-defects on a disordered surface are likely to have unusual
temperature dephasing mechanism other than electromistributions in their splitting energies. We suggest that the
electron interaction, dephasing due to dynamical defects insurface defects can be experimentally probed by measuring
side the conductor has been recently ardfitdto be the size dependence of dephasing time.
important to the saturation problem. Low-energy excitations Consideration of two-level defects in quantum dots for
of the dynamical defects are usually modeled by two-levetheir dominant role in dephasing is motivated by the experi-
systems(TLS). Invoked some three decades ago, first bymentally observed tell-tale signs of TLS in quantum dots:
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wheree is the excitation energy of the particle afdis the
mean level spacing. However, it should be noted that the
direct application of Eq(2) to experimental dafd is diffi-
cult, because it is not meaningful to estimate the temperature
depﬁndence of, by merely replacings with ~kgT in Eqg.
(2).

The organization of the paper is as follows. In Sec. II, we

. L ) ) . describe how dephasing time is calculated in a general
hysteresis and switching behavior, which have been in fagamework. In Sec. Ill, interaction between the two-level de-

detected in various quantum-dot experiméht€ unlike in  fects and electrons is discussed. In Sec. IV, we show the
the experiments on higher-dimensional diffusive metals. In & culation of 1+, in the presence of two-level defects with

quantum dot, usually the Thouless enefgy is the largest \igely and narrowly distributed energies. We conclude in
energy scale unlike the diffusive metallic cd€eTherefore, Sec. V.

the results obtained in the diffusive metallic cagesannot

be applied(even after the appropriate dimensional consider-

ations to quantum dots. Thouless energy is definedBEyy

=#D/L? whereD is the diffusion constant antl is the

typical system size. Let us consider the event that the electron is at the posi-
Dephasing generally describes the loss of coherence @jon r at an initial timet=0, and it arrives at the positiari

suppression of interference. Hence, it is important to knowpy diffusive motion after a time,. The environmental state

which kind of paths are considered before defining the typi-changes fromn to 77’ in this process; the Corresponding

cal time scale of the loss of interference along these paths. Igrobability amplitude of the event is(r’.r, 5", 7; 7).

this paper, we are concerned with pairs of time-reversed The description of the suppression of interference in elec-

paths that return to the origin in a diffusive system, shown intron’s paths by the electron-TLS interaction can be consid-
Fig. 1. These time-reversed paths enclose magnetic fluxsred in two different approaches:

their interference manifests in the weak-localization correc- (i) The electron in the two different paths produces two
tion to conductivity. These paths are chosen for the problengifferent time-dependent electric fields on TLS, thereby, TLS
at hand, because their contribution to COﬂdUCtiVity does no@o to different states, which suppresses interference.
vanish even after disorder averaging. In the interferometry (ji) The fluctuating dipole moment of TLS produces the
studied in this paper, change of the mean conductance att@ne-dependent electric field, thereby, the electron in the two
finite field from its zero field value,59=((9))s+0 different paths gains random phase, which also suppresses
—({(g))g=0, is used to extract the dephasing time from ex-interference.
perimental data, wher§ . . .)) means disorder averaging.  In general, these two approaches are not equivalent, be-
Using the phenomenological random matrix thetsge, for  cause the presence of the electron induces a back reaction
example, Refs. 27,287, can be defined—for instance, by from the TLS environment. However, in the presence of
the formula weak interaction between the particle and the environment, it
is known that either the two descriptions are equivalent, or at
2 N least they give the same dephasing rate up to the second
59~ vl | (1) order in the interactiof? In this paper, we use approac.
N+ 7T Following the scheme of Chakravarty and Schrifigye use
TyA semiclassical approximation on particle’s trajectory and we
consider quantum-mechanical evolution of the T(&vi-
whereN is the number of channels connected to the quanturfionmeni states. We further assume that the TLS environ-
dot. Although, the formulas for the conductance change aréent does not influence the classical paths of the electron,
model dependerit;?8the difference in the equations in these therefore, the diffusive electron motion comes from only
models is not significant for the interpretation of mea- static disorder. Under certain conditions, the two-level de-
sured in experiments. In this paper, we will refer torg fects might be able to effectively change the semiclassical
obtained from the measuretly as in Ref. 21, without dis- Paths of the electrons. In that case, one may estimatey
cussing howdg is related tor,, any further. calculating electron-TLS inelastic-scattering time. However,
Our calculation of dephasing time is similar to the generalT, begins to lose its meaning as a dephasing time, since we
approach of Stern, Aharonov, and Infi/Based on the in- l0ose the semiclassical picture of the electron’s path.
terference of two time-reversed trajectories, we calculate a We describe the tunneling motion in the TLS environment
typical time scale over which the environmental state rein a fully quantum-mechanical way. To this end, we consider
mains in the initial state. Dephasing rater]/due to the time-dependent potentis[ r(t)] exerted by the moving
electron-electron interactions in diffusive quantum dots halectron of the path(t) on a two-level defect. The probabil-
been calculated by Sivan and coworkéts: ity amplitude is given by

FIG. 1. A schematic figure of the electron interferometry involv-
ing a quantum dot that is studied in this paper.

II. INTERFERENCE AND DEPHASING OF PARTICLE'S
TRAJECTORY
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) ) ) _ Now, the dephasing time can be defined as a time scale for
p(r' .1, mi70)= 2 Aj(r'.1;70)€Si( 7' |Uj( )| ), Pc°N(7,) to vanish with a decreasing function such as exp
. &) (—m/7,). But for the present purpose, the particular expo-

nential form of time dependence is not needed.
whereA; andS; are the corresponding amplitude and action

of a classical electron’s trajectory labeled pyJ;(7o) is a
time-evolution operatofin the interaction pictuneof the en- [ll. ELECTRON-TLS INTERACTION

vironmental state associated with the electron trajeatdty We consider two-level tunneling systeif&LS) (Ref. 20

as the environment for an electron in the quantum dot. Let us
, (4)  first consider TLS'’s that have asymmetry energyand the
tunnel splitting energyAy,. The TLS’s are assumed to be
randomly distributed over the dot with their electric dipole
moments randomly oriented. We will assume the dipole mo-

N i [
Uj(To):TEX[{gJO V|[rJ(t),t]dt

where Tis the time-ordering operator and

v [ri(t) t]:e(i/h)Hemt\"/[r_(t)]e—(i/h)Henvt. (5) ment is not too strong so that we do not have to consider
RS ) interaction among the TLS. The density of the TLS will be
The probabilityP(r’,r, ;7o) of finding the particle at’ assumed to be not too high so that multiple-scattering events

after timer,, initially at r with the environment in the initial between the electron and the dipoles can be neglected.
state| ), is given by the sum of the absolute square of theWithin these approximations, we calculate the return prob-

probability amplitudes over the final states of the environ-ability of an electron in the presence of a single TLS,
ment: thereby, we extend the results to the case of many randomly

distributed TLS’s. The Hamiltonian of the TLS can be writ-

. ) , R ten in terms of the localized wave functions of the double
P,(r',r;7o)= [ dn'|p(r',r,5",7,7)]| ©  well potential and also in terms of the eigenenergy basis
=2 A1 r;70)]2 104 A 1/E O
- Hris=% = , 11
] TLSZAO_AHZO E (11)
+2, AALESSI
j;k 17 whereE= A%+ Aoz and the transformation denoted by the
arrov means localized wave-function representatien
X9l Ug(mo)U;(70)| ) 7 e : i :
kL7o/Mjt 7o ' eigen wave-function representation. The dipole strength op-

using the completeness relation for the environmental stategratorp is defined in the eigen wave-function representation:
The return probabilityP, , (7o) of the electron is defined
by the probability of finding the electron at positiorafter

time 7y, initially at the same position with the environmental p= p0< ! 0) —>p0( AlE AO/E) , (12)
state| 7); 0 -1 Ao/E —AJE
Pr (7o) =Py (r".ri70) | (8) wherepy, is the dipole moment when the particle is located in
one of the wells of the defect potential. In the following
=> |Aj(r,f;7'o)|2+2 |Aj|2 section, we will use the eigen wave-function representation
] ]

in which Hy g is diagonal. The TLS Hamiltonian will be
used for the environment Hamiltonidt,,,=Ht s.
TLS dipole at the positiomR feels the electric fieldE(R)
nl+,..., 9 ) C .
produced by the moving electron. The resulting interaction

energy can be expressed by the oper&{o*rj(t)]

< UfU+UfUjr

X\ pg| —————"
2

wherej " denotes the time-reversed pathjofhe first term

in IEq. (9) is termed as the classical return probability

P;'#* 7). The second term comes from the interference of I (V= — B, . .

the pair of time-reversed paths. The remaining terms, which vin (] pn-E(R) Pn-VRV[R-1;(D], (13

do not appear in the above equation, vanish upon ensemble )

averaging over disorder due to the random differences in itsvherep is the dipole moment operator for the TLS, which is

classical actionS;—S, for k#j,j’. The coherent part along the direction of unit vectar. V. is Coulomb interac-

Pf,onh(To) of the return probability is the second term in tion potential

Eq. (9);

e 1 —
Pf,onh(ro)=$ |A(r.1;70)|*Re( 5| U] (70)Uj( )| 7). VdR—H“”Zm*@% vge' iR,
(10 (14
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wheree is the electric charges* is the dielectric constant of mechanical nature of the electron motion in E{.9).
the QOt r_naterlal,L is the linear system size, arul is the \7[r,-(t)] in Eq. (18) is understood a{szﬁj(r,t)lf/Qlej(r,t)>,
spatial dimensionality of the dod{=2,3). Here,vq is the  wherey;(r,t) is the time-dependent wave function that de-

finite Fourier transform of Coulomb potential scribes a wave packet corresponding to the trajegtory
vg=| dre7ier (15) €TI0~ gy (r,0| 2 clersq ¢(r,0) ). (20)
dot e* | r| k
At a finite temperaturel, the wave-packet stathﬂj(r,t))
:Zwe (2D, q+#0) (16) will consist of mostly the eigenenergy states with energies
€ ' limited within e =kgT. Therefore, the time dependence of
e'9 "M will be limited by the frequency windoww|<kgT.
4me The frequency cutoff will be performed in our semiclassical
= (3D, q#0). (17)  calculation later.
e* q2
We use the discrete valuesaf 27/L(m,n,k) for the three- IV. DEPHASING RATE

dimensional case, andg=2#/L(m,n) for the two-
dimensional case, whetem, andn are integers. By insert-
ing Eq. (14) into Eq.(13), we get

Let us consider a quantum dot as a rectangular box with
volumeV=LXLX (L ora<L for 2D dotg, and a diffusion
constantD. Using Eq.94), (10), and(18), we get the coher-

1 ent part of the return probabilitP°°"(,) of the electron,
V[rj(t)]=—f)2 (in-quge 9RO, (18 initially at r=0 (details of the derivation is given in the
L9 “q appendix;

Derivation of the Eq(18) is based on the semiclassical
approximation of the electron’s motion and the unscreened P¢°"(7y)=
dipole moment of TLS. From a purely quantum-mechanical
point of view, one can consider the TLS-electron interaction

v q 34212

1 +|p|=)2q%2 [~ +
_1+2|< |p| >|q qjodt+ft dt-
0 -t
1

similar to its treatment in metallic glass&sWhen the TLS x{cosQ(t — 79) —cosQt ™} —
has two positions R*=R+d/2, the pure quantum- 2m
mechanical TLS-electron interactidfy,y is written as® expio|t])
) fdwf———jr, (21)
o 1p 2 . R dle : io+Dq
M Ld po G '#a® sin(q-d/2) 7 Ok where =1/ \JAZ+A2. To simplify the calculation, from

(19 here onward, we consider the return probability of the par-
ticle at the originr=0.

The frequency of the time-dependent electric field pro-
ced by the electron is not infinitely large; it has an upper
toff. By assuming the electron to be in equilibrium with

her electrons at temperaturethe high-frequency cutoff of

wherecl (cy) is the electron creatigannihilatior) operator
with momentumk, and u, is the Fourier transform of the du
ionic potential. However, the pure quantum-mechanical apg,
proach is not reliable, because the concept of dephasing bgf

comes ambiguous as we leave the semiclassical approxima- given byksT(|w|<kgT): this is true only at tempera-

tion, which has be(_en pomtgd out in Ref. 3‘.1' Here, we mere|3fures that are not too low. Note that because of the finite size
get ﬁome lusefulllnformatlor:( b3)’ comparing :he qu?ntum—of the systemgu,=0 for q=0. Therefore, there is no di-
mechanical Hamiltonian in Eq19) to our semiclassical po- ; : _'

tential in Eq.(18). Sinceq-d<1 in quantum dotsthis is vergence at low frequencies and the low-frequency cutoff of

true—generally speaking, when the Fermi wavelength is” does not play an important role. By integrating &2

much larger than X sin(- d/2)~q- d/2=n-gpy/e. Equation with the condition|w|<kgT, we obtain the coherent part of

. coh . _
(19) can be understood as the interaction between the TLSI-he return probabilityP™", .Wh'Ch decays as<1 .70/7."1’
+ .,. Wehave now definedr, as the dephasing time.

dipole coupled to an effective electric field produced by the‘l’k;é Hephasing rate 4/ from a randomly distributed TLS

electron. . o .
One of the two differences between E¢E8) and(19) is with an asymmetry energg and a tunnel splittingd, is
given by

that the electron interacts with the ion through a screene
interaction uq in Eq. (19 rather than the direct Coulomb

interactionv, as in Eq.(18). The specific form ofu is not 1 _ 2|+ pl—)I? E 9202 Dg? (22)
known though it is expected to be less than If a screened 74(A,A0) 3a2L2¢ % 102+ (Dg?)?
interaction i is used, then the calculated dephasing rate

1/74, would be smaller than that with the unscreened interac- ZpSAS

tion vq. In this paper, we will use instead ofu,. The ~ véL‘zd. (23
second difference, which is rather important, is the quantum- 37°D(A+Ag) o<[q<m/!
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We have used)ry<<1 in the second equality in Eq23).
1/7, obtained above is valid only whegT>7%), while in
the other caseR°"(7,) is an oscillating function of, with
a small amplitude. Therefore, 4 (kgT<#A()) is negli-
gible.

By inserting Eqs(16) and (17) into Eq. (23), whenkgT

> JA2+ A2 we get

1 j—
Td)(A’AO) B

2p2e’E A3
312D e*2L2(A%+ A’

(24)

PHYSICAL REVIEW B 63 195301

= 2P Ao minF (K T/ A min), (32

where

Fz)= f lzdxtan*l (33

Here, the above expression is valid f§T<Ag max Which

is an realistic and common assumption for the temperature
below 1 K. Note thatF(z)~zInz whenz>1, therefore in

the case okgT>A( i, We expect the following tempera-

whered=2,3 is the spatial dimension of the quantum dot,ture dependence:

and

1
2= 2, 2!
o<m?+n2<(L/1)2 M°+N

et
=)
—_

(29

1 1

72 o<m 4t k2< (L) M+ n?+k?

I

3 (26)

A. TLS with widely distributed asymmetry and tunnel-
splitting energies

We can generalize 1/ to the case where the TLS’s are
distributed with a distribution functiof(A,A),

1 1
—=vf dAJdA — = f(A,40).
Ty 078, Ay (AR

By inserting Eq.(24) into the above equation, we get

(27)

1

T

L9-2 2p2e?E 4a° ¢
D Sh%;Z

S(M), (28)

where

(T)—JdAJdAO 2, f(A Ag) (kg T— JAZ+A2),
(29

wherea is the thickness of the dot in cage=2. It is inter-
esting to note that ati=2, the dephasing time does not
depend on the dot area.

To calculater,, we use the standard tunneling model for

the two-level defect!®!® The essential postulate in this

theory is the uniform distribution of the tunneling parameter

\ associated with the tunnel splittingy<e~*. The energy
distribution functionf(A,Ay) in this case is written as

P

f(A,AO)ZA—O. (30)

Furthermore, it is also assumed tlgf has a nonzero mini-
mum valueA . By applying this distribution, we find,

sm=p [ da j“kB” %
%mn

(kBT)2 AO

(31

AAO

1
—oxTlIn
T¢

(34)

kgT )
AO,min

which is closer taT rather thanT2.

Now let us estimater, quantitatively. We consider the
experiments by Huibers and cowork&ren two-dimensional
ballistic semiconductor quantum dots. The quantum dots in
the experiments are in the ballistic regime, while our cal-
culation of 7, is for diffusive quantum dots. However, since
the dephasing time is in the ergodic regime, ¢ 7p), the
results for diffusive dots should be applicable to the chaotic
guantum dots in the ballistic regime. The diffusion coeffi-
cient is obtained through the ergodic time scale dnd
~(Etn/ 61) (A12m*), wherem* is the effective mass of the
electron (for GaAs, m* =0.06M,), and E,/8,~30 for
Ref. 21. For ballistic dots, the Thouless energy is given by
hve/L. For GaAsfi’e*/m*e’~10 nm. A reasonable size
of the dipole moment ig,~ex 10 %m. The thickness of
the two-dimensional quantum dot is rougldy- 10 nm. By
putting together=, and InkgT/Ag min) into Eq. (28), which
are roughly on the order of-110, we find

Ury~ (10 16-10 5 m3s™ 1PkgT. (35)

In order to obtaint,~1 ns nearT=0.1 K, the average

concentration should bB~ (10— 10*9)J m™3. Although

this number is not completely unreasonable, it is too large to
be expected from well-textured semiconductors used in the
experiment$! For comparison, we note that glassy materials

possess a typical TLS concentration oP~10%
—10%3 tm™3,

One may anticipate a different temperature dependence
that might show the saturation ef, by considering the dis-
sipative two-level system due to TLS-phonon interactions or
incoherent two-level systems due to TLS-TLS interactions.
However, it is very difficult to expect that the dephasing rate
is enhanced by several orders of magnitude by such interac-
tions.

The large magnitude oP may be possible if a large
enough number of two-level defects aggregate on the surface
of the quantum dots. This possibility can be experimentally
checked by varying the system size and the dimensionality.
Using our results,

Urgoel8 20374, (36)
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For example, for a 2D quantum dot, the dephasing ratg 1/ Now let us estimate, 5 for a typical single-crystal sys-
by “intrinsic” two-level defects will increase as the thick- tem. Single-crystal silicon structures have been studied in
nessa of the dot increases, whereas it will decrease with this context in the temperature range of interest, below 1 K
for surface defects. down to 5 mK. Both acoustic dissipation and heat capacity
measurements on silicon resonators by Kleiman, Agnolet,
and Bishop’ (see the corresponding estimates by Phiffips
and Keye®) find that the TLS densityny s~10°%m 3,
with an estimated value oA;/A;~100. Now using the
Low-energy excitations exist in semiconductor crystalssame value for\; /A, in the expressiori42), the order-of-
due to the tunneling of impurity ions between equivalentmagnitude estimate of TLS density is found to be s
interstitial lattice sites. Due to the crystal fields, definite po-—1026— 17’m~2. The required density needs to be at least
sitions are preferred and a wide distribution of excitationthree orders of magnitude higher than the typical concentra-
energies is not expected; in glasses, the wide distributiofion in the silicon structures to result in a TLS-induced
arises because of structural disorder. HOWeVer, defects on t%phasn']g t|me7¢~1 ns. Th|S iS an unreasonab'y |arge
surface may result in a wider distribution of energies becausﬁumber, even for the typ|Ca| intentiona”y doped semicon-
of surface roughness. A single tunnel-splitting energy im-qucting structures of silicoff. Though, experimental studies
plieS a narrow distribution of relaxation times such that theOf acoustic and thermal properties of ga|||um arsenide
standard tunneling model, applicable to structural glasses, agructures/heterostructures for the effects of two-level sys-
discussed in the previous section, is not véfid. tems have not been done in the temperature range of interest
In this Section, we consider a well-defined tunnel'splittingfor dephasinjllv4 recent studies on Semi_insu'ating ga'“um

energyA, rather than a wide distribution. The asymmetry grsenide resonatdrssuggest that the typical TLS density is
may be uniformly distributed with a gaussian width, usu-  comparable to that in silicon.

ally determined from the experimental data. The distribution

B. TLS with a narrow-energy distribution of asymmetry and
splitting energies

function is defined as V. CONCLUSION
1 52 We have calculated the dephasing time by assuming the
f(A)=”TLsA e 478 (37 presence of two-level defects inside diffusive quantum dots.
T The temperature dependence of Jis found to be roughly
NtLs is the TLS density. linear (~T) for widely distributed two-level defects in the
The functionS(T) defined in Eq.(29) in the expression standard tunneling model. We find that to explain the size of
for the dephasing rate 4/ is simplified to the experimentally observed dephasing times, we need a
large number of two-level defects. This number is substan-
A(Z) tially larger than that found in glassy materideEmost by
S(T):J dA 5 2f(A)@(kBT— JAZ+ AOZ). (38 three orders of magnitugleTherefore, it is hard to believe
A+Ag that the electron dephasing is dominated by the intrinsic and

independent two-level defects at low temperatures. We have
uqa[Iso calculated, from a distribution of narrow-energy, two-

level defects, and we find a regime of temperature indepen-
dentr,. However, the required number of two-level defects
S(T)~nys (KeT>Ap>A;) (39) is too large as in the case of widely distributed TLS. The

system-size dependence obtained in our calculation can be

0 used to check the possibility of surface defects that are prob-
~-—nrs (kgT>A>Ay). (40 ably effective. Because of the large surface-to-volume ratio

Ay in quantum dots, it may be reasonable to assume that most of

If temperature is larger than the energy scales of TLS, then #he defects are surface aggregated. It will be interesting to
is possible to obtain saturation or temperature-independemistimate P or nq s required for the observed low-
dephasing rate %j,. In realistic systemsj, is usually a temperature charge noises of quantum dots and compare to
small fraction ofA;; thus, the experimentally relevant limit the values from dephasing time. Unfortunately, we are not
is the second casd,;>A,, in expression(40). The dephas- aware of any quantitative theory for the quantum dot charge
ing rate can now be obtained: noise arising from the two-level defects.
Note added In a recent paper, Aleiner, Altshuler, and

1 16 15 Ay 3.1 Galperif? have analyzed the relevance of TLS for electron

7-_¢,~(10 -10 )”TLSA_lm S (41) dephasing. Although they use a different approach and

_ evaluater for different systemsémetals, not quantum dots

For 7, to be on the order of 1 ns, the two-level defect densitytheir conclusions are similar to ours—that is, a substantially

should be large concentration of TLS?, much larger than the typical
A values in metallic glasses is required for the quantitative ex-
NrLe~ A_l(1024_ 15)m~3, (42  planation of the saturation obsegved in experiments on me-
0 tallic wires' by two-level systems®

Note that the variabld is not integrated over, in contrast to
the case for the standard tunneling model; and the final res
depends or\,. Evaluation of the above integral yields
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ACKNOWLEDGMENTS =|+) give rise to the same expressi®f°"(r,) in Eq. (A4)
We are grateful to P. Fulde, Yu. V. Nazarov, A. D. is the value averaged over the TLS position. Here, we have
Zaikin, A. Stern, S. Kettemann, and S. Hunklinger for usefulUSed the disorder average over Tk&exiR-(q+a")1))

discussions. =08 —q- T_he fa(_:tor 3in Eq(A4) comes from the average
over the orientation of the TLS dipoles.
APPENDIX: DERIVATION OF EQ. (21) In the case of/D7y>1 (I is the mean free paththe sum

over the classical paths that appears in @d}) can be writ-
For the simplicity of calculation, we suppose that the TLSten as a path integral using the Wiener meadtifé>3The
is initially in the statd —), an eigenstate of the Hamiltonian path integral can be calculated as
in Eq. (11) with the eigenenergf  (the case with+) can
be calculated in a similar wayThe time evolution operator > |A]_(r,r;TO)|2eiq-[r,-(t)frj(t’)]
U;()[Y;(t)[—)=co(t)|+)+c_(t)|—)] of the TLS corre- j
sponding to the electron pajtcan be written as

_ X(rg)=Tr 1 ™ ) )
ci ()| . ift , 0 _L(m:r D[x(7)]ex —EL dr|x(7)|
odt Vi1 4] (AD

=Texp —+
c-( h X explig- [x(t) —x(t')])
where
=_ exn(—Dla’ |2 e—D(IQIz—zq-q’)lt—t’I,
v o]— VEELI) <+|V.[r,-<t'>,t']|—>> Pt S OI T
n (=il () U1 +) (=l ] =)/ (A5)
(A2) where we have used the boundary conditions for the quan-

tum dot as a rectangular box with volurive=L XL X (L or

To find the corresponding time evolution of the TLS statesa<L for two-dimensional dots Several remarks are in or-
for the time-reversed paths,[U;r(t)|—)=d. (t)[+) der. Equ_at|0n$A5) are_valld _only in diffusive regimes. The
+d_(t)|—)], one obtains a similar form by usingr(t) summation over the d|scr_et!zed momentum vane_llnie;nd
=ri(7o—1). Expanding <_|UJ-T(T0)U]'T(7'0)|—> q" is understood to be limited byr/I. The contributions
=c* (7o), (70) +¢* (70)d_ (7o) up to the second order in from ballistic regime, which are supposed to be small when
VD 74>1, are neglected in this work. The last equality in the

InteractionV, we get Eqgs.(Ab) is obtained for=0.

i imflas —
Re —|UT(r)U. _ Then, the classical return probabiliBf'33Y ) for r=0
&—|Uj(mo)Ujr(70)| ) s given by
T Y Y
= +ﬁ . t . t'[codQ(t+t'— 1)} —cos PC|aSS(TO):; A (1. 70) 2=
XAQE—t )= VIO 1]+ )+ V)1 -), 1
(43) =3 2y @R Dldl*r0).  (A6)
whereiQ)=E=E,—E_= A%+ AOZ, and we used the rela- Inserting Eq.(A5) into Eq.(A4), we get the coherent part
tion V[r;(t)]"=V[r;(t)] in the last equality. of the return probability
Now from Egs.(18), (A3), and(10), one can get the co- 1
herent return probability in Peon(74)= v > exp(—D|q’|%7)

qV
Pf°“<ro>=; A (r,1;70) |2

|<+|EJ|—>ITo ffo
+—F | dt dt’
3ﬁ2|_2d 0 0

+1pl=)2g202 (= N
><1+2|< Ipl—)I%q qfodﬁ t+dt’
0

q 3422 —t

x{cosQ(t* — 7o) — cost~ pe~Pa*~2a-a)lt|

X[codQ(t+t'—79)} —codQ(t—t")}]

(A7)
x% q2|vq|2; |Aj(r,r;TO)|2eiq4[rj(t)—r,-(t’)]‘ vi/r:erte, we used the change of variablegs oft+t’ andt™
(A4) We restrict to the ergodic regimey> 7, therefore

significant contribution comes only from’ =0. By taking
Here, we have omitted the subscriptin Pff’h for the q’=0 and using the Fourier transform of Plal’t | jn Eq.
TLS state, because both of the initial states of the Thp (A7), we obtain Eq(21).

195301-7



KANG-HUN AHN AND PRITIRAJ MOHANTY PHYSICAL REVIEW B 63 195301

1B. L. Altshuler, A. G. Aronov, and D. E. Khmelnitskii, Solid tems in Amorphous and Crystalline Soliéslited by Pablo Es-

State Commun39, 619 (1981); J. Phys. C15, 7367(1982; B. quinazi(Springer, New York, 1998

L. Altshuler and A. G. Aronov, inElectron-Electron Interac- 2'A. G. Huibers, J. A. Folk, S. R. Patel, C. M. Marcus, C. I.
tions in Disordered Systemedited by A. L. Efros and M. Pol- Durnoz, and J. S. Harris, Jr., Phys. Rev. L&tt, 200 (1998
lak (North-Holland, Amsterdam, 1985p. 1. ibid. 83, 5090(1999.

2S. Wind, M. J. Rooks, V. Chandrasekhar, and D. E. Prober, Phys2J. P. Bird, K. Ishibashi, D. K. Ferry, Y. Ochiai, Y. Aoyagi, and T.
Rev. Lett.57, 633(1986; J. J. Lin and N. Giodarno, Phys. Rev. Sugano, Phys. Rev. B1, 18 037(1995.
B 35, 1071(1987; L. Pooke, N. Paquin, M. Pepper, and A. J. 22R. M. Clarke, I. H. Chan, C. M. Marcus, C. |. DuinoJ. S.
Gundlach, J. Phys.: Condens. MatteB289(1989; P. M. Etch- Harris, Jr., K. Campman, and A. C. Gossard, Phys. Re§2B
ernach, M. E. Gershenson, H. M. Bozler, A. L. Bogdanov, and 2656(1995.
B. Nilsson, Phys. Rev. B8, 11 516(1993. 24G. Zimmerli, T. M. Eiles, R. L. Kautz, and John M. Martinis,
3For a review of earlier works, see, e.g., G. Bergmann, Phys. Rep. Appl. Phys. Lett.61, 237 (1992.
107, 1 (1984. 25M. Furlan, T. Heizel, B. Jeanneret, S. V. Lotkhov, and K. Ensslin,
4P. Mohanty, E. M. Q. Jariwala, and R. A. Webb, Phys. Rev. Lett.  Europhys. Lett49, 369 (2000.
78, 3366(1997); P. Mohanty and R. A. Webb, Phys. Rev5B, 26D, E. Grupp, T. Zhang, G. J. Dolan, and Ned S. Wingreen,

R13 452(1997). cond-mat/9906028unpublishegl and references therein.
5J.J. Lin and L. Y. Kao, cond-mat/000741@npublishedl 27H. U. Baranger and P. A. Mello, Phys. Rev.5, 4703(1995.
5D. Natelson, R. J. Willet, K. W. West, and L. N. Pfeiffer, 28P. W. Brouwer and C. W. J. Beenakker, Phys. Re\6934695

cond-mat/0006302unpublishedl (1997.

"A. B. Gougam, F. Pierre, H. Pothier, D. Esteve, and N. O. Birge,°A. Stern, Y. Aharonov, and Y. Imry, Phys. Rev. 41, 3436

J. Low Temp. Phys118 447 (2000. (1990; A. Stern, Y. Aharonov, and Y. Imry, iQuantum Co-
8D. S. Golubev and A. D. Zaikin, Phys. Rev. LeB1, 1074 herence in Mesoscopic Systemaslited by B. KrameKPlenum

(1998. Press, New York, 1991
9B. L. Altshuler, M. E. Gershenson, and I. L. Aleiner, Physica E *°U. Sivan, Y. Imry, and A. G. Aronov, Europhys. Le®8, 115

(Amsterdam 3, 58(1998); I. L. Aleiner, B. L. Altshuler, and M. (1994).

E. Gershensor{fcomment on Ref. B Phys. Rev. Lett82, 3190  3!A. Zaikin and Yu. Nazarovprivate communication
(1999; see also the reply of Golubev and Zaikibid., 82, 3191 32p. stern, Y. Aharonov, and Y. Imry, ifQuantum Coherence
(1999. edited by J. AnandafWorld Scientific, Singapore, 1990

0p_ Mohanty, Ann. Phys(Leipzig) 8, 549(1999; V. E. Kravtsov  33S. Chakravarty and A. Schmid, Phys. Rég0, 193 (1986.
and B. L. Altshuler, Phys. Rev. Leti84, 3394 (2000; P. 34D. Cohen and Y. Imry, Phys. Rev. B9, 11 143(1999.
Schwab, Eur. Phys. J. B8, 189 (2000; P. Cedraschi, V. V. 353ee, e.g., J. L. Black, irGlassy Metals ,| edited by H.-J.

Ponomarenko, and M. Buttiker, Phys. Rev. L&#, 346(2000. Guntherodt and H. BeckSpringer, Berlin, 19811
1p. Mohanty, Physica B80, 446 (2000. 36A. Wiirger, From Coherent Tunneling to Relaxation: Dissipative
2A. Kapitulnik, N. Mason, S. A. Kivelson, and S. Chakravarty, Quantum Dynamics of Interacting DefecSpringer Tracts in
cond-mat/0009201unpublishegl Modern Physics, Vol. 13%Springer, New York, 1997
13y Meir, Phys. Rev. Lett83, 3506(1999. %’R. N. Kleiman, G. Agnolet, and D. J. Bishop, Phys. Rev. L&%.

14p. Mohanty, in theProceedings of NATO Advanced Workshop on  2079(1987).
Size-Dependent Magnetic Scatterirfilluwer Academic, in  *®W. A. Phillips, Phys. Rev. Lett51, 2632(1988.

press. 39R. W. Keyes, Phys. Rev. Let62, 1324(1989.
15A. Vaknin, A. Frydman, and Z. Ovadyahu, Phys. Rev.6B  “°R. E. Mihailovich and J. M. Parpia, Phys. Rev. Led8, 3052
13 037(2000. (1992.
16y Imry, H. Fukuyama, and P. Schwab, Europhys. L&#. 608  *'P. Mohanty, D. A. Harrington, K. L. Ekinci, Y. T. Yang, M. J.
(1999. Murphy, and M. L. Roukesunpublisheg D. A. Harrington, P.
7A. zawadowski, Jan von Delft, and D. C. Ralph, Phys. Rev. Lett. Mohanty, and M. L. Roukes, PhysicaZB4—288 2145(2000).
83, 2632(1999. 42|, L. Aleiner, B. L. Altshuler, and Y. M. Galperin,
8p_W. Anderson, C. M. Varma, and B. I. Halperin, Philos. Mag.  cond-mat/0010228unpublishedl
25, 1(1972. “3R. P. Feynman and A. R. HibbQuantum Mechanics and Path
By, Phillips, J. Low Temp. Phys/, 351 (1972. Integrals (McGraw-Hill, New York, 1965.
2OFor a review, see, e.g., W. A. Phillips, Rep. Prog. PBs.1657  “*L. S. SchulmanTechniques and Applications of Path Integration
(1987, and for a more recent review, see alBonneling Sys- (Wiley-Interscience, New York, 1981

195301-8



