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Quantum Friction of Micromechanical Resonators at Low Temperatures
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Dissipation of micro- and nanoscale mechanical structures is dominated by quantum-mechanical
tunneling of two-level defects intrinsically present in the system. We find that at high frequencies —
usually, for smaller, micron-scale structures — a novel mechanism of phonon pumping of two-level
defects gives rise to weakly temperature-dependent internal friction, Q�1, concomitant to the effects
observed in recent experiments. Because of their size, comparable to or shorter than the emitted phonon
wavelength, these structures suffer from superradiance-enhanced dissipation by the collective relaxa-
tion of a large number of two-level defects contained within the wavelength.
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abandoned. For dissipation in micromechanical resona-
tors, such issues become terribly important, as a new

	� is the coupling constant which relates the change in
the asymmetry energy to the local elastic strain.
Physical properties of physically and chemically engi-
neered micromechanical systems are of immense funda-
mental and technical interest [1]. Some of the recent
spectacular examples of micromechanical structures in-
clude the measurement of vortex motion in high-Tc super-
conductors [2], biomolecular recognition [3], actuation of
sensors via Casimir force [4], and shuttling of an electron
charge in a quantum dot [5]. Important to all these experi-
ments is the oscillation of a particular set of micron-sized
resonators at a resonance frequency determined by the
geometry and material properties. Changes in the ‘‘reso-
nant’’ oscillation frequency or the oscillation amplitude
mostly determine the magnitude of the force of interest,
to which the micromechanical structure is coupled.
Detrimental to the detection of force is the damping of
the resonant structure, quantified by quality factor Q or
dissipation Q�1.

The essential problem inherent to the types of force
measurement mentioned above is the low quality factor Q,
observed in small resonators. In many experiments, in-
trinsic two-level defects [6,7] are found to be the domi-
nant cause of internal friction Q�1 in crystalline
resonators [8–10]. The observed linear temperature de-
pendence of Q�1 / T [8] could be explained assuming
reasonable density of defects within a linear response
theory of two-level systems (TLS) [11,12]. Despite the
success of the TLS mechanism, dissipation at low tem-
peratures continues to hold many challenges, notably the
observation of a weak temperature dependence [10] and
the nonmonotonic dependence of Q�1�T� in silicon reso-
nators [13]. Most recent experiments merely add to the list
of problems yet to be understood.

Previous theoretical works on the acoustic response of
TLS use the linear response approximation or adiabatic
approximation for nonlinear response [14,15]. The ques-
tion we would like to explore is whether the anomaly can
be explained in terms of TLS if both assumptions are
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parameter space emerges with decreasing size. For ex-
ample, emitted phonon wavelength becomes much longer
(� 1 �m) compared to the system size at low tempera-
tures, bringing novel correlation effects [16], extremely
relevant to mesoscopic structures.

In this work, we evaluate internal friction Q�1 when
the two-level defects operate nonlinearly and nonadia-
batically. We show that the nonlinear response of Q�1

results in a large contribution at low temperatures at high
driving frequencies due to the process of phonon pump-
ing. We propose and demonstrate a mechanism of how
Q�1 can be significantly enhanced by the phonon pump-
ing process through cooperative emission of phonons.
Cooperative emission becomes possible because of the
long wavelength of the emitted phonons, which allows
the correlated decay of two-level systems contained
within the wavelength. Our theory provides a mechanism
for enhanced dissipation in micromechanical resonators
within the context of two-level systems.

The Hamiltonian of a TLS is fully characterized by the
asymmetry energy � and the tunneling matrix element
�0. The asymmetry energy of a TLS is the energy split-
ting due to the static strain � 1

2 �s and the applied time-
dependent strain field �0 cos!t : ��t� � �s � 2	�0 	
cos!t, where 	 is the constant of coupling between the
acoustic wave and the asymmetry energy. Friction due to
thermal phonons is described by the Hamiltonian for the
single TLS coupled to phonon fields [7]:

H �
�s � 2	�0 cos!t
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�z�aq;� � ay
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where V and � are the volume and the mass density of
the resonator, v� is the sound velocity for polarization �,
aq;��a

y
q;�� is the phonon annihilation (creation) operator.
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FIG. 1. The schematic diagram describes the energy-pumping
process of the two-level atom from the acoustic wave to
phonons. The crossing curves represent the time evolution of
the two energy levels with the energy gap of ��t� �
2	�0 cos!t ��s. The energy diagrams of the two-level atom
as a function of the configuration coordinates are depicted in
the upper panel.
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In crystalline materials with many TLSs, it is known
that the static asymmetry energy �s has a wide distribu-
tion due to the randomness of the local strain, while
tunneling splitting energy �0 has a well-defined value
[11]. For simplicity, we consider a rectangular distribu-
tion [12] of �s with n number of TLS per unit volume in
0 <�s <�max

s . The underlying assumption, 
h! �
	�0 � �max

s , holds in most experiments.
The internal friction Q�1 is related to the energy

loss per unit volume �E in a cycle of the acoustic
wave; Q�1 � ���E�=�2�E0�
, where E0 � 2��20v

2 is the
acoustic wave energy stored per unit volume [7]. The
time-averaged phonon emission power 
PP��s; T� of a
TLS is related to Q�1: Q�1�T� � �n=2�v2� 	
�1=�20!�

R�max
s

0

PP��s; T�d�s. Furthermore, we divide

the two-level systems into two kinds based on their
asymmetry energy �s: (i) �s < 2	�0, and (ii) �s >
2	�0, which contribute to the total dissipation according
to Q�1�T� � Q�1

1 � Q�1
2 :

Q�1
1 �T� �

n

2�v2

1

�20!

Z 2	�0

0


PP��s; T�d�s; (2)

Q�1
2 �T� �

n

2�v2

1

�20!

Z �max
s

2	�0


PP��s; T�d�s: (3)

In linear response theory where �0 is infinitesimally
small, all the TLS belong to category (ii), and Q�1

1 � 0.
However, even a small experimental value of �0 � 10�6

will give rise to nonlinear behavior [8], which im-
plies that TLS with �s < 2	�0 may also play an impor-
tant role [12].

Usually a time-dependent unitary transformation U is
used for solving the time-dependent Hamiltonian in the
nonlinear regime, so that the TLS has time-dependent

energy levels given as � 1
2E�t�, [E�t� �

�����������������������
��t�2 � �2

0

q
]. In

the standard adiabatic limit [14,15] used to explain the
low-frequency experiments, the acoustic field frequency
is assumed to be very low so that the additional term due
to the unitary transformation �i 
hUy��@U�=�@t�
 �
�y���0	�0�=�E�t�2�
 
h! sin!t can be safely neglected. In
contrast, here we consider the high-frequency regime
where the matrix element of this additional term cannot
be neglected in comparison to the diagonal term 1

2E�t��z
even at the level-crossing point E�t� � �0:

	�0 
h!
�0

� �0: (4)

Under this condition, as the tunneling motion between the
two sites is not fast compared to the rapid time evolution
of the acoustic wave, it is not useful to take the TLS
bonding states of the two sites as the basis states. Instead,
it is more natural to consider the localized basis states in
each local potential minimum and consider the tunneling
term 1

2 �0�x as a perturbation.
We treat the coupling to the acoustic wave adiabatically

and treat the tunneling term and the coupling to the
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thermal phonon perturbatively. The approximation is
guaranteed by the fact that TLS-phonon interaction can
be treated perturbatively whenever the two-level approxi-
mation is valid [17]. Let jli and jri be the left and the right
localized states, respectively. The leading term for the
transition from one state to the other is the second order
process involving the tunneling and emission (absorption)
of a phonon; at low temperatures the single phonon pro-
cess dominates. The thermal averaged relaxation rate is
written as �1=%���
 � A�2

0� coth��=�2kBT�
, where A �P
��	

2
�=�2� 
h4v5

���
. Here we assume the Debye density
of states of phonon with a linear dispersion: !� � v�q.

Time evolution of the occupation number nr�� 1� nl�
follows the rate equation [14] for the time-dependent
asymmetry energy ��t� � 2	�0 cos!t � �s:

dnr

dt
� �

nr � n�0�
r

%���t�

; n�0�

r �t� � 1=�e*��t� � 1�; (5)

where * � 1=kBT. The typical process is depicted in
Fig. 1. In the regime �s < 2	�0, the two energy levels
cross, and at this point population inversion arises. Note
that the population inversion process (A ! B ! C) is fol-
lowed by the spontaneous emission of phonon (C ! D).
The high-frequency assumption of Eq. (4) is crucial for
the pumping process near the level-crossing point. In the
conventional adiabatic limit (	�0 
h!=�0 � �0) with
TLS energies of � 1

2E�t�, level crossing is avoided and
the TLS in the low (high) energy state remains mostly in
the low (high) energy state.

The time-averaged phonon emission power [14] can be
obtained by solving Eq. (5) for nr�t�:


PP��s; T� � �
!
2�

Z 2�
!

0
dt��t�

dnr�t�
dt

: (6)

For the general case of asymmetric TLS, numerical
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FIG. 2. The internal friction Q�1 � Q�1
1 � Q�1

2 as a function
of temperature for !%� � 1.
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integration of Eq. (5) gives 
PP as a function of the static
asymmetry energy �s and temperature T, and Eq. (2)
subsequently gives Q�1

1 . For the particular case of sym-
metric TLS (�s � 0), Eq. (6) can be rewritten using an
analytic solution of nr�t� at T � 0:


PP �
2	2�20A�

2
0

�!

Z �
2!

� �
2!

cos2!t
exp�sin!t

!%�
�

cosh�1=!%��
dt; (7)

where %� is a typical relaxation time scale of symmetric
TLS at zero temperature when !%� > 1:

1

%�
� 2A�2

0	�0: (8)

When �s > 2	�0, the TLS always stays in the lower en-
ergy state at zero temperature, hence the TLS does not
emit a phonon in its steady state, 
PP��s >2	�0;T�0��0.
Since 
PP��s;T�0� is a smoothly decaying function of �s,
an analytic formula for Q�1

1 �T�0� can be obtained using
the approximation

R2	�0
0


PP��s;T�0�d�s �	�0� 
PP�0;0��

PP�	�0;0�
�	�0 
PP�0;0�. From Eq. (7), the zero tempera-
ture internal friction Q�1

1 is found to be

Q�1
1 �T�0��

n	2

�v2 sech

�
1

!%�

	
I1

�
1

!%�

	
; (9)

where I1�x� is the first kind modified Bessel function of
order 1.

Now let us turn to Q�1
2 . For weak strain 2	�0 < �s,

where the energy levels do not cross, the phonon pumping
process does not take place. This is the regime where the
usual linear response theory is a good approximation for
describing internal friction. In the linear response theory
[6,11], Q�1

2 �T� in Eq. (3) for kBT � 
h! > 
h=%��0�
can be written as [6] Q�1

2 �T� � ��n	2�=��v2kBT�

�1=!�

R�max
s

2	�0
��2=E2�sech2�E=�2kBT�
%�1�E�d�, where

E �
������������������
�2 ��2

0

q
. For �0 � 	�0 � �max

s , an expression

for Q�1
2 is easily found:

Q�1
2 �T� �

n	2

�v2

2

!%�
f
�

kBT
2	�0

	
; (10)

where f�x� is an almost linear function, defined by f�x� �
x
R
1
1=x dt�t= sinht�.

Figure 2 shows the temperature dependence of Q�1 �
Q�1
1 � Q�1

2 for !%� � 1, calculated from Eqs. (2), (3),
(5), (6), and (10). Q�1 shows a weak temperature depen-
dence with decreasing temperature, as Q�1

1 becomes more
important than Q�1

2 at low temperatures. The low-
temperature saturation value of Q�1 for !%� � 1 is well
approximated by �0:3�1=!%���n	2=�v2�. Now, let us
estimate %� from experimental data [8]. Since n	2=�v2

is roughly the high-temperature saturation [6] value of
Q�1, for the single-crystalline silicon data in Ref. [8], we
estimate n	2=�v2 � 10�6–10�5 from the experiments at
! � 103–104 Hz. Since the low-temperature saturation
value of Q�1 was found to be �10�7–10�6 for these
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frequencies, we estimate !%� � 1, which means %� �
10�3–10�4 sec. However, these values of %� are anoma-
lously small compared to the direct estimate using Eq. (8)
with reasonable values of parameters [6,7,11]. By using
	 � 1 eV, �0 � 10�6, A � 108 s�1 k�3

B into Eq. (8), we get
%� � 1 sec. In other words, the low-temperature dissipa-
tion in experiments [8] is anomalously larger than our
direct theoretical estimation.

Here we propose and discuss the origin of the anoma-
lously small relaxation time %�. We believe that the co-
operative emission [18] of phonons provides a natural
mechanism for the short relaxation time. In Dicke super-
radiance [18], N number of two-level atoms within a
distance shorter than the emitted photon wavelength
emits photons cooperatively, therefore the lifetime of
the atom in the excited state is effectively reduced by a
factor of N. In the usual treatment of phonon emission of
TLS, as we have done so far, the emission of the phonon is
calculated by assuming that the TLSs are totally inde-
pendent. However, this assumption is not valid when a
number of TLS are contained within a distance shorter
than the wavelength of the emitted phonon. This phonon
wavelength, 0ph � �� 
hvs�=�	�0�
 (vs is the sound veloc-
ity), can be considerably larger (* �m), leading to the
cooperative emission from a large number of two-level
systems.

Now let us consider N two-level systems within a
volume 03

ph. In the context of phonon emission, pumping
of the two-level system is done by the acoustic wave
applied to the resonator. The many-TLS Hamiltonian in
Eq. (1) can be generalized to H � H0 � Htun � HTLS-ph
where H0 � HTLS � Hph �

1
2 ��t�

P
N
i�1 �i;z �

P
q;� 	


h!��q�a
y
q;�aq;�, Htun���0=2�

P
N
i�1�i;x, and HTLS-ph�PN

i�1

P
q;�	�

������������������������������������
��q
h�=�2�Vv��


q
�i;z�aq;��ay

�q;��.

The many-TLS state jl; l; l; . . . li, where all the TLS are
in the l state, is the maximally excited state or the
ground state. We consider the set of many-TLS
085504-3
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FIG. 3. The time-averaged phonon emission power 
PPN of N
symmetric TLSs (�s � 0) at T � 0:1	�0=kB and !%� � 20,
which was numerically calculated (see the text).
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states generated from HTLS-ph � Htun, which are

jMi �
��������������������������������������������������������������
��N=2� M�!=N!�N=2� M�!


p
�
PN

i�1 ��
i �

N=2�Mjl;
l; l; . . . li, where M � �N=2, �N=2� 1, �N=2�
2; . . . ; N=2. These states satisfy HTLS�t�jMi �
M��t�jMi. As in the case of a single TLS, a perturbation
analysis finds the transition rate wM�1;M from jMi to
jM � 1i to be wM�1;M�t��w����t�
�N2�M��N2�M�1�,
where w����A�2

0��=1�exp���=kBT�
. Here, we
have used the relation hM�1j

P
N
i�1�

�
i jMi������������������������������������������������������

�N=2�M��N=2�M�1�
p

. Now the rate equation for
the many-TLS remains to be solved numeri-
cally: ��dnM�=�dt�
�wM;M�1�t�nM�1�wM�1;M�t�nM�
wM;M�1�t�nM�1�wM�1;M�t�nM. The time-averaged
power 
PPN emitted by N number of TLS can be ob-
tained as 
PPN ���!=2��

R2�=!
0 dt

PN=2
M��N=2M��t� 	

f�dnM�t�=�dt�
g.
Note that for phonons independently emitted by the

TLSs, 
PPN is simply proportional to the number N; 
PPN �
N 
PP. However, in cooperative emission, the lifetime of the
excited state of a single TLS is N times shorter, hence the
phonon emission power of a single TLS should be N times
larger when !%� > 1 [19]. This means that 
PPN should be
proportional to N2 for !%� > 1. Our numerical results
indeed show that the 
PPN has a quadratic dependence of N
(see Fig. 3).

When N number of TLS are within 0ph, one obtains
Q�1
1 by replacing 
PP with its effective value 
PP� � 
PPN=N.

The enhanced phonon emission power due to super-
radiance 
PP� � N 
PP then provides a natural explanation
of the anomalously large internal friction at low tempera-
tures. Including the phonon superradiance effect, Eq. (9)
for !%� > 1 can be rewritten as

Q�1�T � 0� � Q�1
1 �T � 0� �

1

!%�
�

n	2

�v2 ; (11)

where %�
� � %�=N is the renormalized relaxation time and

N is the number of cooperating TLSs. Thus, the enhance-
ment of Q�1 at low temperature by a factor of 103–104

compared to our initial estimate in the independent TLS
model [Eq. (9)] indicates that a large number of �103–104

TLS emit phonons cooperatively. By taking 0ph � 10 �m
from 0ph � �� 
hvs�=�	�0�
, the total number of TLSs in
the volume 03

ph is �105 according to Ref. [11] or �103

according to Ref. [12], which is a reasonably large enough
number for the cooperative emission by 103 TLSs.

In conclusion, we formulate a theory of internal fric-
tion of micro- and nanomechanical resonators, which
invokes intrinsic two-level defects in the nonlinear re-
gime at high frequencies. As temperature decreases, the
mechanical friction crosses over from the linear regime
to the nonlinear regime, resulting in the saturation be-
havior as T goes to zero. Because of the phonon super-
radiance, the low-temperature saturation value of Q�1 is
085504-4
strongly enhanced by a factor given by the number of
two-level systems contained within the emitted phonon
wavelength.
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